Blog
Explore

Busting the Misconception Between Gravity and Atmospheric Pressure

A common misconception we see at AstroCamp is how gravity and atmospheric pressure work. It makes sense! The two seem interchangeable at a glance, however they both get weaker as altitude increases, and there can’t even be an atmosphere without gravity. Despite their similarities, the two are very different.

Gravity is a property of anything with mass. It’s one of the four fundamental forces in the universe, and it’s caused by an object bending spacetime around itself. The larger the object, the greater a force it will exert.

Pressure isn’t even a force (technically). It’s a measurement of how much force is being applied per unit area. A lot of force can be spread out over a large surface area so that the pressure is overall small, and a small force can be focused onto a small enough point to cause a high pressure.

When talking about atmospheric pressure, we’re talking about the average force per unit area the gas molecules are exerting on objects in the air. The air molecules are zooming everywhere and bouncing into everything. Every time they impact, they push with a tiny force.

Atmospheric pressure changes with 1) the rate of collisions and 2) the force of impact. More molecules mean more collisions, which leads to a higher air pressure. Similarly, heavier gases or gases moving at higher speeds will cause a higher impact force, also increasing the atmospheric pressure.

Air at sea level is being compressed by all of the air above it, weighing it down and increasing its density. When you increase altitude, the less air you have above you, so pressure goes down. This is why atmospheric pressure gets weaker the higher in altitude you go.

After learning how they both work, it’s easy to see why the effects of gravity and atmospheric pressure can get confused. But their differences are also prevalent enough that you should be able distinguish between the two!

Written By: Scott Yarbrough