What is an Electromagnet?

Launching bottle rocket.

Here at AstroCamp, one of our most popular classes is Electricity and Magnetism. At first glance, it might not be obvious how these things are related, but they are actually tied together through important physical principles.
To give you some evidence, let me introduce the electromagnet.
This is really just a metal rod wrapped with a bunch of wire. Without any electricity going through the wire, it doesn’t do anything special. Now, let’s press the button and let electricity flow through the coil!
What is going on? Well, to explain that we have to back up a bit. Let’s start by answering this question: What is electricity? It is the thing that runs our light bulbs, smart phones, computers, and air conditioning but what is it on a more fundamental level? What is happening?
asset-v1-pkuhighschoolph1019999_t1typeassetblockatom-light-640x360As you probably know, everything you have ever touched is made out of atoms, and these atoms have three parts: the positively charged proton, the negatively charged electron, and the neutral neutron. These charges determine how the particles interact; particles with identical charges push away while those with opposites attract.
Electricity, as you may have figured out by looking at the word, has to do with electrons. Electricity basically means moving electrons. However, physics has a bit of a surprise for us here. Whenever a charge is moving, it makes a magnetic field–if this word seems confusing, this is just what is produced by a magnet to push and pull on other magnets–around it in a circle. This happens every single time. You might be tempted to ask why, but I don’t have a great answer for you. This is just how nature is.
All we have done to make an electromagnet is sort of durn this trick on its head. By wrapping the wire into a coil, the circular magnetic field created every time an electron moves adds up in the middle. This kind of design is called a solenoid.
This awesome illustration shows how the circular magnetic fields around each wire add up in a solenoid to make a strong magnetic field inside. All credit goes to Paul Nylander.
This might seem like a simple lab trick to convince you about the mysterious but very real connection between electricity and magnetism, but it turns out to be an incredibly useful and important design. Outside the obvious purpose of picking things up like the giant electromagnets at junkyards, electromagnets are used in speakers, hard drives, MRI machines, motors, generators, and many other things you might not expect!
This is a view inside the Large Hadron Collider at CERN, the most powerful particle accelerator on the planet! This shoots tiny particles at very near the speed of light along a very precise track. While you might expect it to be the metal walls that keep the particles inside, the tiny particles would actually fly right out through the walls! So how do they keep those pesky particles in line? They steer them using incredible powerful superconducting ELECTROMAGNETS! Photo credit CERN.
Written By: Scott Alton